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In part 1, I closely analyzed subsection 4 of Einstein's proof of General Relativity, showing is was a 
series of pushes and fudges.  In this and upcoming parts I will look at the next subsections, starting 
with subsection 5. 

This section begins on page 121 of the Dover edition of The Principle of Relativity.  In it Einstein starts 
by discussing contravariant and covariant 4-vectors, which are of course tensors.  This is just a further 
mucking up of variables, as we will see.  Remember, Einstein started subsection 4 with “coordinates” 
in the form X1, X2, etc.  He then switched to “differentials” in the form x1, x2, etc.  In subsection 5, he 
now wants to relabel them again.  So he creates an undefined function by which the original variables 
are translated into new ones, in the form xν.  To do this, he takes them through an intermediate variable 
called xσ.  This is just tensor calculus gymnastics, and is otherwise meaningless.  It is done only to 
batter your mind, breaking any tenuous hold it may have had on reality.  Again, these multiple variable 
transferences are done only to get you to concentrate on the changing coefficients, so that you forget to 
ask any mechanical questions or demand any variable assignments.   It is prestidigitation of the first 
order.  

It is also done to cover up the dumping of the original infinitesimal ds.  Remember that?  The first 
equations were written in terms of that infinitesimal, which was always undefined.  

ds2 = -dX1
2 – dX2

2 – dX3
2 + dX4

2

To prevent you from asking what that infinitesimal was, Einstein uses the tensor calculus to get rid of 
it.  I have shown that it either has to equal 0 or 1, but since that would destroy the proof, Einstein needs 
to bury it as soon as possible.  He does that by switching variables.  In the way of the tensor calculus, 
he just creates a new field that is a function of the old field, burying the old field and any problems it 
may have contained.  

But he doesn't quite succeed in covering all the problems.  Subsection 5 starts out with this sentence:

The linear element is defined by the four “components” dxν,  for which the law of transformation is expressed 
by. . . .

So it would appear the dxν's are line elements themselves.  Components of a line element must be linear 
themselves.  He even admits it in the very next sentence:
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The dxσ  are expressed as linear and homogeneous functions of the dxν.

Note the word “linear.”  But one sentence later, he is stirring our brains again:

Hence we may look on these coordinate differentials as the components of a “tensor” of the particular kind which 
we call a contravariant four-vector.  

Now they are “coordinate differentials.”  He has called them points, coordinates, differentials, line 
elements, and now coordinate differentials.   And this  is  after he rewrote these sections in 1922 to 
clarify them!  

But let's move on.  We have found that a contravariant tensor is just a simple 4-vector, which is a 
system of coordinates “based on four quantities.”   Next we begin multiplying these tensors together. 
The first question that  should come to mind—but apparently never has in the history of physics—is 
how you can multiply two coordinate systems together.  Remember, to create the matrix, all Einstein 
did is propose one point-mass moving in the system.  Other than that, the system is just a static grid of 
coordinates.   Now say we have two of  these systems,  each with one mass point  moving in  each. 
According  to  Special  Relativity,  to  bring  these  two  systems  together  (or  to  make  sense  of  them 
physically), we need a transform between them.  In Special Relativity, to do this we don't multiply S by 
S', do we?   No, we add or subtract them, using the speed of light as the transform.  In other words, if 
we are looking at the x-dimension, and wish to transform an x into an x', we add or subtract some 
further x.  We can see this by returning to the first equation of Special Relativity, which is

x' = x – vt

As you see, the simple transform there is in the form vt, and it is subtracted.  To create the fuller 
transform, we just have to get light into that equation, and Einstein does that by using these equations:

x = ct
x' = ct'

By substituting among those three equations, Einstein derives gamma.  But at no point does he multiply 
x and x' or S and S'.  He doesn't, because it is clearly illogical to do so.  You can't multiply coordinate 
systems  together,  and  you  can't  multiply  distances  traveled  either.   Nor  can  you  multiply  “line 
elements.”  

And yet we see him multiplying contravariant tensors together in his proof of General Relativity.    He 
does this because the masters of the tensor calculus told him it was OK, and he wasn't clear enough on 
the manipulations to question them, as we see.  

I  will  be told that  tensors are 4-vectors, and once we have motion in the system, each vector is a 
velocity.  If we multiply velocities together, we get accelerations.  Gravity is an acceleration, of course.

The problem there is that before you multiply the velocities together, you have to transform them.  The 
transform comes first, then the integration.  And the transform cannot be achieved by multiplying.  The 
transform is  based  on  a  time  differential,  and  a  time differential  is  a  difference,  not  a  product  or 



quotient.  

You will say that just means we can't multiply a primed 4-vector by a unprimed 4-vector, but it is more 
than that.  Consider equation 5, the first equation of subsection 5:

dx'σ = Σ(∂x'σ/∂xν)dxν

You will say the the transform is written as a sum Σ, which sidesteps my problem.  But it is written as a 
sum of ratios.  The partial derivative is a ratio.  The transform between x and x' isn't a ratio.  

You will say, of course it is.  See the equation x = x0/ γ.    Since γ = x0/x, we have a ratio.  But although 
what we call the transform can be written as a ratio, the above equation, being a field equation, should 
be written in terms of the field.  In the actual field, we get x' from x using subtraction, not a quotient. 

You will  say,  “We can use either one,  since subtraction is a variant of a quotient or product.   For 
instance.  If x = 1 and x' = 1.2, you are saying the difference is .2, which is not a quotient.  But 1 is a 
fraction of 1.2, so we can just as easily put them in a ratio of partial differentials.”

That's true, as long as you are rigorous in your method.  But if you are not rigorous, these shortcuts are 
deadly, as we will now see.   Since time is now in our 4-vector as an equal partner with x, and since 
both  have  been  given  equivalent  coefficients,  they  should  act  the  same  way in  these  transforms, 
correct?  Our ∂x'σ   above is no longer just an x, as in an x-dimension.  It can be any one of four vectors, 
including the t vector.  But if we use the tensor calculus' own ratios for gamma, we find

γ = x0/x
γ = t/t0

Those are inverse, as you see.  That is simply because v=x/t.  When x goes in the numerator, t goes in 
the denominator.  So they have to be inverse, regardless of anything else in Relativity.  But that blows 
the equation

dx'σ = Σ(∂x'σ/∂xν)dxν

Because if we apply the equation to the time vector, the equation needs to be

dx'σ = Σ(∂xν/∂x'σ)dxν

Since the transform is reversed for time t compared to x,y,z, the partial derivative in this equation 
should be reversed as well.   Gamma is defined as a ratio of S to S', and so is this partial derivative.  

This one problem is enough to destroy the entire derivation of General Relativity.

This is why I warned in my previous paper that writing the 4-vector in such a cavalier manner was 
deadly.  Because Minkowski didn't pay attention to his kinematics or his variable assignments, he wrote 
the 4-vector in a false form.  Even if we accept all the other postulates of Minkowski, the relationship 
of x and t must be an inverse relationship at all times.  It is in the form of x =1/t.  And yet in the basic 
4-vector equation he and Einstein use, the form is not inverse.  

ds2 = -dx2 – dy2 – dz2 + c2dt2



Because Minkowski substituted ct for x4, t and x are in direct proportion.  That last term should be in 
the form 1/t, not t.  This means that gamma must and does contradict Einstein's first equation.  

And this means that if physicists have been claiming to use the field equations to calculate nearly 
correct answers to various problems, they must have either been lying completely, or further fudging 
the  equations  to  match  the  data.    There  is  no  possibility  of  using  field  equations  that  are  so 
compromised at the ground level to calculate correct answers.  

In part 3, I will continue to clean up this proof of General Relativity, showing how the misdefinitions in 
the tensor proof doom the final equations.  
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