|
return to
homepage return to
updates
Unifying
the Electron and Proton
by
Miles Mathis milesmathis.com email:mm@milesmathis.com
 nope,
standard model, wrong again
First
posted December 20, 2008 Abstract:
Using simple math, I show that the electron is the proton
stripped of its outer spins.
This is
another of the problems the standard model has failed to solve.
QED and QCD do a lot of bragging, but they have very little to
say about these fundamental questions. String theory also avoids
simple questions like this, although these are the sort of
questions a good quantum or atomic theory should answer first. We
know that the electron weighs about 1820 times less than the
nucleon, but after 90 years of experiment and theory, we still
have no idea why. Once again, we have been told that the number
1820 is a fluke or a mystery, beyond physical comprehension, akin
to the question of why horses have four legs instead of eight.
They do, that is all. But as I will show, the number 1820 is not
arbitrary or accidental. It can be arrived at by simple math and
postulates.
My explanation begins by importing theory from
my paper on
superposition. There I showed that the mysteries of light
motion and interaction could be explained by stacked spins, each
spin outside the gyroscopic influence of inner spins. I showed
the existence of four spins, of relative size 1,2,4, and 8, each
orthogonal to neighboring spins. In other words, most photons are
spinning every way they can spin, axially and in the x,y, and z
planes. In my paper on QCD, I applied this to baryons, showing
that baryons also had all possible spins. In that paper I unified
the proton and the neutron, showing that the difference between
the two is only a difference in z-spin. That is, the particle at
the center of every baryon is the same. Only the spins are
different. I will
show in a subsequent paper how this applies to mesons as well.
Mesons are these same baryons stripped of outer spins. This
unifies all hadrons. In this paper, I will show that the electron
is also this same baryon stripped of outer spins. In this way, I
will prove that electrons, mesons, neutrons and protons are all
the same fundamental particle.
We begin this fundamental
analysis by asking how the energy of a particle would increase
when it goes from a state of no spin to a state of maximum spin.
We start by arbitrarily assigning a non-spinning electron the
energy 1. We also assign the number 1 to its radius. We do this
because 1820 is a relative number, not an absolute number, so we
don't care what the experimental values for mass are. We need
only develop relative numbers. Obviously, the easiest way to do
that is to start from a baseline of 1.
Next, we let the
electron reach some small non-relativistic linear velocity v.
That will be our baseline energy for the non-spinning state. To
find how much energy the electron could gain by spin, we let the
spin match the linear velocity. We let the tangential velocity of
a point on the surface of the electron reach v. How much energy
has the electron gained? Well, as the radius is to the velocity,
the circumference will be to the spin. But we can't use 2πr,
since we must be looking at the tangential velocity, not the
orbital velocity. 2πr/t applies to the orbital velocity, but we
can't use that since the energy of the electron or proton will be
expressed mainly through its emitted field, and that field is
emitted at a tangent, as a linear vector. We MUST use the
tangential velocity here, which is why I
have spent so much time in other papers separating the two
mathematically and theoretically and developing a new equation
for tangential velocity. What
we find if we use my new equations is that the circumference is
simply 8 times the radius. In kinematic or dynamic
situations, we effectively replace π with 4. This gives us a
spin energy of 8. We already had a non-spin energy of 1, so the
total energy is 9. You may think of the non-spin energy as mass
energy, or you may think of it as energy from linear velocity.
Either way we must sum the two energies, since the total energy
of the electron is a summation of spin and non-spin energies.
To clarify, we use the circumference here instead of the
surface area, say, because we want the total energy of a given
point on the surface of the electron. That point will have spin
energy and non-spin energy. Given an axial spin of the electron,
that point on the surface will have a vector at any given dt in
one plane only. If we used the surface area equation, that would
imply multiple vectors we don't yet have. We don't need to
consider surface area until the next step, as you will see.
In
this next step, we add the next spin, which is the x-spin. This
spin is end-over-end, beyond the gyroscopic influence of the
axial spin. Being end-over-end, this spin must have a radius or
wavelength of 2. And since this spin is orthogonal to the axial
spin, we now have too many vectors to use a simple circumference
equation. We must switch to a sort of surface area equation. A
point on the surface of our electron will now have a total of
three linear vectors, one due to linear velocity, one due to
axial spin, and one due to end-over-end motion. To express the
total energy of the electron with x-spin, we use this term: [1 +
(8 x 16)/2]. The radius is now 2, remember, so the 16 comes from
8r. The 8 comes from the axial spin, which we must multiply by
the x-spin. We divide by 2 to express the fact that the particle
itself is in the forward part of the x-spin only half the time,
so only half the axial energy is affecting the x-energy in any
one line of motion. What I mean is that the particle's x-spin
will be moving against any linear motion half the time. A spin
like this cannot combine with a linear vector by a straight
addition. Only half of it can be expressed over any sum.
We
repeat this same math and logic to create the y and z-spins. The
radius of the y-spin is 4, so the term will be [1 + (8 x 16 x
32)/22]. We
divide by 4 since we must use only half of both end-over-end
spins. Likewise, the z-spin is [1 + (8 x 16 x 32 x 64)/24].
We divide by 2 squared squared because we are now in three
dimensions. The x-spin is expressing only 1/4 of its strength
relative to z, since it is orthogonal twice. The complete
equation or representation then becomes:
[1 + 8], [1 + (8
x 16)/2], [1 + (8 x 16 x 32)/22],
[1 + (8 x 16 x 32 x 64)/24]
= [1 + 8], [1 + 26],
[1 + 210], [1
+ 214] = 9,
65, 1025, 16385
The electron with all spins has an energy
of 16,385. The electron with no spin has an energy of 1. The
electron with axial spin has an energy of 9. If we divide 16,385
by 9 we get 16,385/9 = 1820.56
We may therefore deduce
that the electron at rest is spinning only about its own axis. An
electron with all possible stable spins is a proton, anti-proton,
or neutron. An electron with no z-spin is a meson.
This
number is very close to the atomic mass unit or Dalton which has
a value of 1822. My margin of error may be explained by the
presence of the gravitational field at the quantum level, but I
will save that analysis for another paper.
I will be
asked how the electron can show a wave motion with only an axial
spin. I have already shown that the wave characteristic of matter
and of light is caused by stacked spins. But here we have only
the first spin. How is the wave expressed? Well, it isn't
expressed by an electron at rest, and we are comparing rest
masses here. The electron must be moving to express a wave. If
the electron begins moving and expresses a wave, of course it
must have a second spin. It must get this spin from collision
with photons in the charge field, we assume. And this second spin
will add to the energy and therefore the apparent mass of the
electron. A moving electron will become a sort of stable meson.
As you can see from the math above, we can predict that it will
have an energy about 7.2 times (65/9) that of the electron at
rest. So in the first instance, the moving electron is not
gaining energy only from Relativity. It is primarily gaining
energy from x-spin.
As a bonus, I will now show that
the magnetic moment of the electron and its electric charge are
the same number. Currently, the two are measured in different SI
units, making the comparison difficult. Logically, the two
fields—magnetic and electric—should be measurable in the same
units, such as Newtons or Joules. They both create forces, so it
is the force we would like to compare. But in current theory, we
find that the magnetic moment at the level of the electron is
measured in J/T, or Joules per Tesla. The electric charge is
measured in Coulombs. So going from one to the other is a bit
tricky. You are rarely or never told how they compare in size to
one another directly. Since this information is highly useful in
creating theory at this level, I will show you how to make the
transfer.
The charge on the electron is currently
measured to be 1.602 x 10-19
C. The magnetic moment is 9.284 x 10-24
J/T. Dividing, we find that the charge is 17,255
times the magnetic moment. If we compare the units, we find that
J/T may be written as Cm2/s.
But how do we develop a transform? We need to know how many
meters there are in a second. Fortunately, we can do that simply
by using c. We don't know how many meters there are in a second,
but a photon does. A photon is going c, so for him there are
2.9979 x 108 meters
in one second. Three hundred million meters in every second,
which means that, for light, the second is much larger. But we
have meters squared here, so if we compare the square meter to
the second, we get the number √c, which is 17,314. Therefore
that is our transform from meters to seconds. You can see that it
almost precisely the right number.
To read about a new
experiment that confirms this paper, go
here.
If this
paper was useful to you in any way, please consider donating a
dollar (or more) to the SAVE THE ARTISTS FOUNDATION. This will
allow me to continue writing these "unpublishable"
things. Don't be confused by paying Melisa Smith--that is just
one of my many noms de plume. If you are a Paypal user,
there is no fee; so it might be worth your while to become one.
Otherwise they will rob us 33 cents for each transaction.
|